Reconciling elasticity tensor constraints from mineral physics and seismological observations: applications to the Earth's inner core

Geophysical Journal International(2020)

引用 2|浏览4
暂无评分
摘要
This study establishes the proper framework in which to compare seismic observations with mineral physics constraints for studies of the inner core by determining how the elements of the elasticity tensor are sampled by the normal modes of the Earth. The obtained mapping between the elements of the elasticity tensor and the seismic wave speeds shows that the choice of averaging scheme used to calculate isotropic properties is crucial to understand the composition of the inner core, especially for comparison with the shear wave speed such as that provided in PREM. For example, the appropriate shear wave speed calculated for an Fe-Ni-Si hcp alloy at inner-core conditions differs from the shear wave speed obtained by taking a Reuss average by as much as $27\, {\rm per\, cent}$ . It is also shown for the first time that by combining the isotropic observations based upon normal-mode characteristic frequencies and anisotropic parameters from their splitting, the five independent elastic parameters (A, C, F, L and N) that fully describe a transversely isotropic inner core can be uniquely constrained. The elastic values based upon a variety of mode-splitting studies are reported, and the differences between models from various research groups are shown to be relatively small ( $\lt 10\, {\rm per\, cent}$ ). Additionally, an analogous body-wave methodology is developed to approximately estimate the five independent elastic constants from observations of compressional wave traveltime anomalies. The body-wave observations are utilized to consider the depth dependence of inner-core anisotropy, in particular, the structure of the innermost inner core. Finally, we demonstrate that substantial errors may result when attempting to relate seismically observed P and S wave speeds from Debye velocities obtained through nuclear resonant inelastic X-ray scattering. The results of these experiments should be compared directly with the Debye velocity calculated from seismically constrained elastic constants. This manuscript provides a new set of formulae and values of seismic observations of the inner core that can be easily compared against mineral physics constraints for better understanding of the inner-core composition.
更多
查看译文
关键词
Composition and structure of the core,Body waves,Seismic anisotropy,Surface waves and free oscillations,Theoretical seismology,Wave propagation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要