CoMatch - Semi-supervised Learning with Contrastive Graph Regularization.

Junnan Li,Caiming Xiong大牛学者,Steven Hoi大牛学者

ICCV(2021)

引用 110|浏览135
摘要
Semi-supervised learning has been an effective paradigm for leveraging unlabeled data to reduce the reliance on labeled data. We propose CoMatch, a new semi-supervised learning method that unifies dominant approaches and addresses their limitations. CoMatch jointly learns two representations of the training data, their class probabilities and low-dimensional embeddings. The two representations interact with each other to jointly evolve. The embeddings impose a smoothness constraint on the class probabilities to improve the pseudo-labels, whereas the pseudo-labels regularize the structure of the embeddings through graph-based contrastive learning. CoMatch achieves state-of-the-art performance on multiple datasets. It achieves ~20% accuracy improvement on the label-scarce CIFAR-10 and STL-10. On ImageNet with 1% labels, CoMatch achieves a top-1 accuracy of 66.0%, outperforming FixMatch by 12.6%. The accuracy further increases to 67.1% with self-supervised pre-training. Furthermore, CoMatch achieves better representation learning performance on downstream tasks, outperforming both supervised learning and self-supervised learning.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn