Tiam1 Mediates Rac1 Activation And Contraction-Induced Glucose Uptake In Skeletal Muscle Cells

FASEB JOURNAL(2021)

引用 8|浏览27
暂无评分
摘要
Contraction-stimulated glucose uptake in skeletal muscle requires Rac1, but the molecular mechanism of its activation is not fully understood. Treadmill running was applied to induce C57BL/6 mouse hind limb skeletal muscle contraction in vivo and electrical pulse stimulation contracted C2C12 myotube cultures in vitro. The protein levels or activities of AMPK or the Rac1-specific GEF, Tiam1, were manipulated by activators, inhibitors, siRNA-mediated knockdown, and adenovirus-mediated expression. Activated Rac1 was detected by a pull-down assay and immunoblotting. Glucose uptake was measured using the 2-NBD-glucose fluorescent analog. Electrical pulse stimulated contraction or treadmill exercise upregulated the expression of Tiam1 in skeletal muscle in an AMPK-dependent manner. Axin1 siRNA-mediated knockdown diminished AMPK activation and upregulation of Tiam1 protein expression by contraction. Tiam1 siRNA-mediated knockdown diminished contraction-induced Rac1 activation, GLUT4 translocation, and glucose uptake. Contraction increased Tiam1 gene expression and serine phosphorylation of Tiam1 protein via AMPK. These findings suggest Tiam1 is part of an AMPK-Tiam1-Rac1 signaling pathway that mediates contraction-stimulated glucose uptake in skeletal muscle cells and tissue.
更多
查看译文
关键词
AMPK, glucose uptake, muscle contraction, Rac1, Tiam1
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要