99mTc-Methionine Gold Nanoparticles as a Promising Biomaterial for Enhanced Tumor Imaging.

Journal of pharmaceutical sciences(2020)

引用 23|浏览12
暂无评分
摘要
Methionine-gold nanoparticles (MGNs) was synthesized by conjugating methionine via dithiocarbamate linkage to gold nanoparticles (GNPs), prepared simultaneously by one pot modified Burst method. Formation of MGNs was confirmed by UV-visible spectroscopy and appearance of new IR bands in the range of 934 cm-1 to 1086 cm-1 and shifting of N-C,S-S and S-C-S stretching, confirms the involvement of '-S-C-S-' group of methionine dithiocarbamate with GNPs. The presence of Au in MGNs was confirmed by EDXA spectrum, whereas TEM, SAED and XRD revealed that MGNs are nanocrystalline (~13 nm) and have face-centered cubic structure. MGNs was labeled with 99mTc (TMGNs) with radiolabeling efficiency greater than 99% using 300 μg of stannous chloride, pH 7 and 90.6 MBq of 99mTcO4. The stability data showed that the conjugate will remain infrangible in systemic circulation and in acidic microenvironment of tumor. The blood kinetic profile of TMGN in rabbits and biodistribution studies in EAT tumor bearing balb/c mice showed longer in vivo circulation and slow clearance compared to radiolabeled methionine (TM). TMGN demonstrated nearly three-fold higher tumor accumulation (3.9 ± 0.35% ID/g), 2-fold lower tumor saturation dose (1.0 μg/kg) and higher tumor retention compared with TM. Data showed that the TMGN tumor: blood ratio (1.05) is nearly 2.5-fold higher than TM (0.44), whereas TMGN tumor: muscle ratio (97.5) is nearly 8-fold higher than TM (11.6). In conclusion, TMGN showed excellent tumor targeting and has promising prospects as a SPECT-radiopharmaceutical for imaging tumors.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要