The adhesion of clots in wounds contributes to hemostasis and can be enhanced by coagulation factor XIII

SCIENTIFIC REPORTS(2020)

引用 9|浏览8
暂无评分
摘要
The adhesion of blood clots to wounds is necessary to seal injured vasculature and achieve hemostasis. However, it has not been specifically tested if adhesive failure of clots is a major contributor to rebleeding and what mechanisms prevent clot delamination. Here, we quantified the contribution of adhesive and cohesive failure to rebleeding in a rat model of femoral artery injury, and identified mechanisms that contribute to the adhesive strength of bulk clots in a lap-shear test in vitro. In the rat bleeding model, the frequency of clot failures correlated positively with blood loss (R = 0.81, p = 0.014) and negatively with survival time (R = − 0.89, p = 0.0030), with adhesive failures accounting for 51 ± 14% of rebleeds. In vitro, adhesion depended on fibrinogen and coagulation factor XIII (FXIII), and supraphysiological FXIII improved adhesive strength. Furthermore, when exogenous FXIII was topically applied into the wound pocket of rats, eleven adhesive failures occurred between eight rats, compared to seventeen adhesive failures between eight untreated rats, whereas the number of cohesive failures remained the same at sixteen in both groups. In conclusion, rebleeding from both adhesive and cohesive failure of clots decreases survival from hemorrhage in vivo. Both endogenous and exogenous FXIII improves the adhesive strength of clots.
更多
查看译文
关键词
Biomaterials,Biophysics,Biopolymers in vivo,Materials science,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要