Applications Of Physiologically Based Pharmacokinetic Modeling Of Rivaroxaban-Renal And Hepatic Impairment And Drug-Drug Interaction Potential

JOURNAL OF CLINICAL PHARMACOLOGY(2021)

引用 17|浏览32
暂无评分
摘要
The non-vitamin K antagonist oral anticoagulant rivaroxaban is used in several thromboembolic disorders. Rivaroxaban is eliminated via both metabolic degradation and renal elimination as unchanged drug. Therefore, renal and hepatic impairment may reduce rivaroxaban clearance, and medications inhibiting these clearance pathways could lead to drug-drug interactions. This physiologically based pharmacokinetic (PBPK) study investigated the pharmacokinetic behavior of rivaroxaban in clinical situations where drug clearance is impaired. A PBPK model was developed using mass balance and bioavailability data from adults and qualified using clinically observed data. Renal and hepatic impairment were simulated by adjusting disease-specific parameters, and concomitant drug use was simulated by varying enzyme activity in virtual populations (n = 1000) and compared with pharmacokinetic predictions in virtual healthy populations and clinical observations. Rivaroxaban doses of 10 mg or 20 mg were used. Mild to moderate renal impairment had a minor effect on area under the concentration-time curve and maximum plasma concentration of rivaroxaban, whereas severe renal impairment caused a more pronounced increase in these parameters vs normal renal function. Area under the concentration-time curve and maximum plasma concentration increased with severity of hepatic impairment. These effects were smaller in the simulations compared with clinical observations. AUC and C-max increased with the strength of cytochrome P450 3A4 and P-glycoprotein inhibitors in simulations and clinical observations. This PBPK model can be useful for estimating the effects of impaired drug clearance on rivaroxaban pharmacokinetics. Identifying other factors that affect the pharmacokinetics of rivaroxaban could facilitate the development of models that approximate real-world pharmacokinetics more accurately.
更多
查看译文
关键词
drug&#8208, drug interaction, hepatic impairment, pharmacokinetics, physiologically based pharmacokinetic modeling, renal impairment, rivaroxaban
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要