Improving The Estimation Of Environment Parameters Via Initial Probe-Environment Correlations

PHYSICAL REVIEW A(2021)

引用 5|浏览0
暂无评分
摘要
Small, controllable quantum systems, known as quantum probes, have been proposed to estimate various parameters characterizing complex systems such as the environments of quantum systems. These probes, prepared in some initial state, are allowed to interact with their environment, and subsequent measurements reveal information about different quantities characterizing the environment, such as the system-environment coupling strength, the cutoff frequency, and the temperature. These estimates have generally been made by considering only the way that the probe undergoes decoherence. However, we show that information about the environment is also imprinted on the probe via the probe and environment correlations that exist before the probe state preparation. This information can then be used to improve our estimates for any environment. We apply this general result to the particular case of a two-level system probe undergoing pure dephasing, due to a harmonic-oscillator environment, to show that a drastic increase in the quantum Fisher information, and hence the precision of our estimates, can indeed be obtained. We also consider applying periodic control pulses to the probe to show that with a combination of the two-the effect of the control pulses as well as the initial correlations-the quantum Fisher information can be increased by orders of magnitude.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要