Large enhancement of the in-field critical current density of YBCO coated conductors due to composite pinning landscape

SUPERCONDUCTOR SCIENCE & TECHNOLOGY(2021)

引用 11|浏览28
暂无评分
摘要
YBa2Cu3O7-based coated conductors (CCs) achieve the highest critical current densities (J(c)) of any known superconductor and are a key technology for applications such as rotatory machines, high-field magnets and power transmission. Incorporation of nano-sized non-superconducting second phases as additional vortex pinning centers has been considered the most amenable route to further enhance J(c) at an industrial scale, and has been successfully used in commercial CCs. The resulting pinning landscape is quite complex, with both synergistic and competing interactions among the various types of defects. Particle irradiation, on the other hand, allows for a controlled post-processing incorporation of a well-defined defect morphology. We have previously shown that irradiation with protons and other light ions can further enhance the in-field J(c) in commercial state-of-the-art CCs. Here we develop a combined irradiation process that increases J(c) above values previously achieved by irradiating with only one species. Our new approach involves sequentially irradiating with 250 MeV Au ions and 4 MeV protons. For example, at T similar to 27 K (liquid neon) and mu H-0 similar to 4 T, a region of interest for rotatory machines applications, we obtain J(c) similar to 5 MA cm(-2), which is about 40% higher than the values produced by the individual irradiations. Finally, we conclude that this is due to the synergistic pinning effects of the introduced splayed, non-uniform columnar defects and small clusters.
更多
查看译文
关键词
coated conductor,superconductors,critical current,vortex pinning,composite pinning landscape
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要