Developing Silicon Carbide For Quantum Spintronics

APPLIED PHYSICS LETTERS(2020)

引用 91|浏览26
暂无评分
摘要
In current long-distance communications, classical information carried by large numbers of particles is intrinsically robust to some transmission losses but can, therefore, be eavesdropped without notice. On the other hand, quantum communications can provide provable privacy and could make use of entanglement swapping via quantum repeaters to mitigate transmission losses. To this end, considerable effort has been spent over the last few decades toward developing quantum repeaters that combine long-lived quantum memories with a source of indistinguishable single photons. Multiple candidate optical spin qubits in the solid state, including quantum dots, rare-earth ions, and color centers in diamond and silicon carbide (SiC), have been developed. In this perspective, we give a brief overview on recent advances in developing optically active spin qubits in SiC and discuss challenges in applications for quantum repeaters and possible solutions. In view of the development of different material platforms, the perspective of SiC spin qubits in scalable quantum networks is discussed.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要