Photometric Selection And Redshifts For Quasars In The Kilo-Degree Survey Data Release 4

ASTRONOMY & ASTROPHYSICS(2021)

引用 18|浏览130
暂无评分
摘要
We present a catalog of quasars with their corresponding redshifts derived from the photometric Kilo-Degree Survey (KiDS) Data Release 4. We achieved it by training machine learning (ML) models, using optical ugri and near-infrared ZYJHK(s) bands, on objects known from Sloan Digital Sky Survey (SDSS) spectroscopy. We define inference subsets from the 45 million objects of the KiDS photometric data limited to 9-band detections, based on a feature space built from magnitudes and their combinations. We show that projections of the high-dimensional feature space on two dimensions can be successfully used, instead of the standard color-color plots, to investigate the photometric estimations, compare them with spectroscopic data, and efficiently support the process of building a catalog. The model selection and fine-tuning employs two subsets of objects: those randomly selected and the faintest ones, which allowed us to properly fit the bias versus variance trade-off. We tested three ML models: random forest (RF), XGBoost (XGB), and artificial neural network (ANN). We find that XGB is the most robust and straightforward model for classification, while ANN performs the best for combined classification and redshift. The ANN inference results are tested using number counts, Gaia parallaxes, and other quasar catalogs that are external to the training set. Based on these tests, we derived the minimum classification probability for quasar candidates which provides the best purity versus completeness trade-off: p(QSO(cand)) > 0.9 for r<22 and p(QSO(cand)) > 0.98 for 22更多
查看译文
关键词
methods: data analysis, methods: observational, catalogs, surveys, quasars: general, large-scale structure of Universe
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要