Computational planning of the synthesis of complex natural products

NATURE(2020)

引用 152|浏览64
暂无评分
摘要
Training algorithms to computationally plan multistep organic syntheses has been a challenge for more than 50 years 1 – 7 . However, the field has progressed greatly since the development of early programs such as LHASA 1 , 7 , for which reaction choices at each step were made by human operators. Multiple software platforms 6 , 8 – 14 are now capable of completely autonomous planning. But these programs ‘think’ only one step at a time and have so far been limited to relatively simple targets, the syntheses of which could arguably be designed by human chemists within minutes, without the help of a computer. Furthermore, no algorithm has yet been able to design plausible routes to complex natural products, for which much more far-sighted, multistep planning is necessary 15 , 16 and closely related literature precedents cannot be relied on. Here we demonstrate that such computational synthesis planning is possible, provided that the program’s knowledge of organic chemistry and data-based artificial intelligence routines are augmented with causal relationships 17 , 18 , allowing it to ‘strategize’ over multiple synthetic steps. Using a Turing-like test administered to synthesis experts, we show that the routes designed by such a program are largely indistinguishable from those designed by humans. We also successfully validated three computer-designed syntheses of natural products in the laboratory. Taken together, these results indicate that expert-level automated synthetic planning is feasible, pending continued improvements to the reaction knowledge base and further code optimization.
更多
查看译文
关键词
Automation,Cheminformatics,Natural product synthesis,Chemical synthesis,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要