Time-Resolved Rotational Velocities In The Upper Atmosphere Of Wasp-33 B

ASTRONOMICAL JOURNAL(2021)

引用 30|浏览15
暂无评分
摘要
While steady empirical progress has been made in understanding the structure and composition of hot-planet atmospheres, direct measurements of velocity signatures, including winds, rotation, and jets, have lagged behind. Quantifying atmospheric dynamics of hot planets is critical for a complete understanding of their atmospheres, and such measurements may even illuminate other planetary properties, such as magnetic field strengths. In this manuscript we present the first detection of the Balmer lines H alpha and H beta in the atmosphere of the ultra-hot Jupiter WASP-33 b. Using atmospheric models that include the effects of atmospheric dynamics, we show that the shape of the average Balmer line transmission spectrum is consistent with rotational velocities in the planet's thermosphere of v(rot) = 1.01(-1.0)(+0.8) km s(-1). We also measure a low-significance day- to nightside velocity shift of -4.6+(+3.4)(-3.4) km s(-1) in the transmission spectrum, which is naturally explained by a global wind across the planet's terminator. In a separate analysis the time-resolved velocity centroids of individual transmission spectra show unambiguous evidence of rotation, with a best-fit velocity of 10.0(-2.0)(+2.4) km s(-1), consistent with the value of v(rot) derived from the shape of the average Balmer line transmission spectrum. Our observations and analysis confirm the power of time-resolved transmission spectra with a high signal-to-noise ratio to measure the velocity structures in exoplanet atmospheres. The high rotational and wind velocities we measure highlight the need for more detailed 3D global climate simulations of the rarefied upper atmospheres of ultra-hot gas giants.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要