Pontryagin’s minimum principle-based real-time energy management strategy for fuel cell hybrid electric vehicle considering both fuel economy and power source durability

Energy(2020)

引用 101|浏览8
暂无评分
摘要
This paper presents a real-time and approximately optimal energy management strategy (EMS) based on Pontryagin’s minimum principle (PMP), considering both fuel economy and power source durability. To develop the target strategy, performance degradation models are built for two power sources: a proton exchange membrane fuel cell and a lithium ion battery. This study provides an online co-state updating method for uncertain driving cycles. The method allows the battery’s state of charge to be controlled within a certain range and determines the nearly optimal hydrogen consumption. Furthermore, by incorporating a fuel cell power variation limiting factor with a weight coefficient into the PMP to suppress power changes, the durability of the fuel cell can be improved. The average daily operating cost (calculated based on the fuel consumption and power source degradation) is used to evaluate the trade-off between fuel economy and power source durability. Simulation results show that the fuel cell durability is improved with a slight increase in fuel consumption and battery degradation, and that the average daily operating cost is effectively reduced. A comparison with the results obtained by adopting a rule-based EMS and a dynamic programming-based EMS indicate the superiority of the proposed EMS.
更多
查看译文
关键词
Fuel cell hybrid electric vehicle,Energy management strategy,Pontryagin’s minimum principle,Fuel economy,Power source durability,Online implementation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要