Entorhinal and ventromedial prefrontal cortices abstract and generalize the structure of reinforcement learning problems

Neuron(2021)

引用 58|浏览39
暂无评分
摘要
Knowledge of the structure of a problem, such as relationships between stimuli, enables rapid learning and flexible inference. Humans and other animals can abstract this structural knowledge and generalize it to solve new problems. For example, in spatial reasoning, shortest-path inferences are immediate in new environments. Spatial structural transfer is mediated by cells in entorhinal and (in humans) medial prefrontal cortices, which maintain their co-activation structure across different environments and behavioral states. Here, using fMRI, we show that entorhinal and ventromedial prefrontal cortex (vmPFC) representations perform a much broader role in generalizing the structure of problems. We introduce a task-remapping paradigm, where subjects solve multiple reinforcement learning (RL) problems differing in structural or sensory properties. We show that, as with space, entorhinal representations are preserved across different RL problems only if task structure is preserved. In vmPFC and ventral striatum, representations of prediction error also depend on task structure.
更多
查看译文
关键词
reinforcement learning,RL,generalization,spatial cognition,entorhinal cortex,grid cells,hippocampal formation,vmPFC,structure learning,cognitive map
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要