FOXQ1 promotes the osteogenic differentiation of bone mesenchymal stem cells via Wnt/β-catenin signaling by binding with ANXA2.

Stem cell research & therapy(2020)

引用 25|浏览10
暂无评分
摘要
BACKGROUND:This study investigated the role of Forkhead box Q1 (FOXQ1) in the osteogenic differentiation of bone mesenchymal stem cells. METHODS:Mouse bone mesenchymal stem cells (mBMSCs) were transfected with lentivirus to generate Foxq1-overexpressing mBMSCs, Foxq1-suppressed mBMSCs, and mBMSC controls. The activity of osteogenic differentiation was evaluated with alizarin red staining, alkaline phosphatase activity assay, and RT-qPCR. Wnt/β-catenin signaling activities were compared among groups by TOPFlash/FOPFlash assay, immunofluorescence staining, and western blot assay of beta-catenin (CTNNB1). Coimmunoprecipitation mass spectrometry was also carried out to identify proteins binding with FOXQ1. RESULTS:Our data showed that FOXQ1 expression was positively correlated with the osteogenic differentiation of the mBMSCs. FOXQ1 also promoted the nuclear translocation of CTNNB1 in the mBMSCs, enhancing Wnt/β-catenin signaling, which was also shown to be essential for the osteogenic differentiation-promoting effect of FOXQ1 in the mBMSCs. Annexin A2 (ANXA2) was bound with FOXQ1, and its depletion reversed the promoting effect of FOXQ1 on Wnt/β-catenin signaling. CONCLUSION:These results showed that FOXQ1 binds with ANXA2, promoting Wnt/β-catenin signaling in bone mesenchymal stem cells, which subsequently promotes osteogenic differentiation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要