Efficient Single-Photon Detection with 7.7 ps Time Resolution for Photon-Correlation Measurements

ACS PHOTONICS(2020)

引用 55|浏览48
暂无评分
摘要
A broad range of scientific and industrial disciplines require precise optical measurements at very low light levels. Single-photon detectors combining high efficiency and high time resolution are pivotal in such experiments. By using relatively thick films of NbTiN (8-11 nm) and improving the pattern fidelity of the nanostructure of the superconducting nanowire single-photon detectors (SNSPD), we fabricated devices demonstrating superior performance over all previously reported detectors in the combination of efficiency and time resolution. Our findings prove that small variations in the nanowire width, in the order of a few nanometers, can lead to a significant penalty on their temporal response. Addressing these issues, we consistently achieved high time resolution (best device 7.7 ps, other devices similar to 10-16 ps) simultaneously with high system detection efficiencies (80-90%) in the wavelength range of 780-1000 nm, as well as in the telecom bands (1310-1550 nm). The use of thicker films allowed us to fabricate large-area multipixel devices with homogeneous pixel performance. We first fabricated and characterized a 100 x 100 mu m(2) 16-pixel detector and showed there was little variation among individual pixels. Additionally, to showcase the power of our platform, we fabricated and characterized 4-pixel multimode fiber-coupled detectors and carried out photon-correlation experiments on a nanowire quantum dot resulting in g(2) (0) values lower than 0.04. The multipixel detectors alleviate the need for beamsplitters and can be used for higher order correlations with promising prospects not only in the field of quantum optics, but also in bioimaging applications, such as fluorescence microscopy and positron emission tomography.
更多
查看译文
关键词
superconducting nanowire single-photon detector,high time resolution,multipixel detectors,photon correlation,quantum optics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要