Protein Loops With Multiple Meta-Stable Conformations: A Challenge For Sampling And Scoring Methods

PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS(2021)

引用 5|浏览9
暂无评分
摘要
Flexible regions in proteins, such as loops, cannot be represented by a single conformation. Instead, conformational ensembles are needed to provide a more global picture. In this context, identifying statistically meaningful conformations within an ensemble generated by loop sampling techniques remains an open problem. The difficulty is primarily related to the lack of structural data about these flexible regions. With the majority of structural data coming from x-ray crystallography and ignoring plasticity, the conception and evaluation of loop scoring methods is challenging. In this work, we compare the performance of various scoring methods on a set of eight protein loops that are known to be flexible. The ability of each method to identify and select all of the known conformations is assessed, and the underlying energy landscapes are produced and projected to visualize the qualitative differences obtained when using the methods. Statistical potentials are found to provide considerable reliability despite their being designed to tradeoff accuracy for lower computational cost. On a large pool of loop models, they are capable of filtering out statistically improbable states while retaining those that resemble known (and thus likely) conformations. However, computationally expensive methods are still required for more precise assessment and structural refinement. The results also highlight the importance of employing several scaffolds for the protein, due to the high influence of small structural rearrangements in the rest of the protein over the modeled energy landscape for the loop.
更多
查看译文
关键词
conformational ensembles, flexible protein loops, protein loop modeling, scoring functions
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要