Accelerating deep convolutional neural networks using specialized hardware

Microsoft Research Whitepaper(2015)

引用 458|浏览11
暂无评分
摘要
Recent breakthroughs in the development of multi-layer convolutional neural networks have led to stateof-the-art improvements in the accuracy of non-trivial recognition tasks such as large-category image classification and automatic speech recognition [1]. These many-layered neural networks are large, complex, and require substantial computing resources to train and evaluate [2]. Unfortunately, these demands come at an inopportune moment due to the recent slowing of gains in commodity processor performance.Hardware specialization in the form of GPGPUs, FPGAs, and ASICs1 offers a promising path towards major leaps in processing capability while achieving high energy efficiency. To harness specialization, an effort is underway at Microsoft to accelerate Deep Convolutional Neural Networks (CNN) using servers augmented with FPGAs—similar to the hardware that is being integrated into some of Microsoft’s datacenters [3]. Initial efforts to implement a single-node CNN accelerator on a mid-range FPGA show significant promise, resulting in respectable performance relative to prior FPGA designs and high-end GPGPUs, at a fraction of the power. In the future, combining multiple FPGAs over a low-latency communication fabric offers further opportunity to train and evaluate models of unprecedented size and quality.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要