Enhancement of SARS-CoV-2 Receptor Binding Domain -CR3022 Human Antibody Binding Affinity via in Silico Engineering Approach

Research Square(2020)

引用 0|浏览7
暂无评分
摘要
Abstract Background: The nCoV-2019 is a cause of COVID-19 disease. The surface spike glycoprotein (S), which is necessary for virus entry through the intervention of the host receptor and it mediates virus-host membrane fusion, is the primary coronavirus antigen (Ag). The angiotensin-converting enzyme 2 (ACE2) is reported to be the effective human receptor for SARS-CoVs 2. ACE2 receptor can be prevented by neutralizing antibodies (nAbs) such as CR3022 targeting the virus receptor-binding site. Considering the importance of computational docking, and affinity maturation we aimed to find the important amino acids of the CR3022 antibody (Ab). These amino acids were then replaced by other amino acids to improve Ab-binding affinity to a receptor-binding domain (RBD) of the 2019-nCoV spike protein. Finally, we measured the binding affinity of Ab variants to the Ag. Result: Our findings disclosed that several variant mutations could successfully improve the characteristics of the Ab binding compared to the normal antibodies. Conclusion: The modified antibodies may be possible candidates for stronger affinity binding to Ags which in turn can affect the specificity and sensitivity of antibodies.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要