Delayed metformin treatment improves functional recovery following traumatic brain injury via central AMPK-dependent brain tissue repair.

Brain research bulletin(2020)

引用 6|浏览4
暂无评分
摘要
Accumulating evidence suggests that chronic metformin posttreatment offers potent neuroreparative effects against acute brain injury. However, in previous studies, metformin was not initially administered beyond 24 h postinjury, and the effects of delayed metformin treatment in traumatic brain injury (TBI) and other types of acute brain injury and the related mechanisms are unclear. To test this, male C57BL/6 mice received once daily metformin treatment (20, 50 or 100 mg/kg/d, i.p.) at day 1-14, day 1-2, day 1-10, day 3-10, day 5-12 or day 5-28 after cryogenic TBI (cTBI). The results showed that 100 mg/kg/d metformin administered at day 1-14 postinjury significantly promoted motor functional recovery in the beam walking and gait tests and reduced the infarct volume. Metformin (100 mg/kg/d) administered at day 1-10 or day 3-10 but not day 1-2 or day 5-12 after cTBI significantly improved motor functional outcomes at day 7 and 14, and reduced the infarct volume at day 14. Interestingly, the therapeutic time window was further expanded when the duration of metformin treatment starting at day 5 postinjury was extended to 2 weeks. Furthermore, compared with cTBI, the administration of metformin at day 3-10 or day 5-28 after cTBI significantly elevated the expression of phosphorylated adenosine monophosphate-activated protein kinase (AMPK) and growth associated protein 43 (an axonal regeneration marker) and the number of vascular branch points and decreased the area of glial scar and the number of amoeboid microglia in the peri-infarct area at day 14 or 28 postinjury. The above beneficial effects of metformin were blocked by the intracerebroventricular injection of the AMPK inhibitor compound C (40 μg/mouse/d). Our data provide the first evidence that metformin has a wide therapeutic time window for at least 5 days after cTBI, during which it can improve functional recovery by promoting tissue repair and inhibiting glial scar formation and microglial activation in a central AMPK-dependent manner.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要