Impacts of atmosphere–sea ice–ocean interaction on Southern Ocean deep convection in a climate system model

Climate Dynamics(2020)

引用 9|浏览4
暂无评分
摘要
Deep convection in polar oceans plays a critical role in the variability of global climate. In this study, we investigate potential impacts of atmosphere–sea ice–ocean interaction on deep convection in the Southern Ocean (SO) of a climate system model (CSM) by changing sea ice–ocean stress. Sea ice–ocean stress plays a vital role in the horizontal momentum exchange between sea ice and the ocean, and can be parameterized as a function of the turning angle between sea ice and ocean velocity. Observations have shown that the turning angle is closely linked to the sea-ice intrinsic properties, including speed and roughness, and it varies spatially. However, a fixed turning angle, i.e., zero turning angle, is prescribed in most of the state-of-the-art CSMs. Thus, sensitivities of SO deep convection to zero and non-zero turning angles are discussed in this study. We show that the use of a non-zero turning angle weakens open–ocean deep convection and intensifies continental shelf slope convection. Our analyses reveal that a non-zero turning angle first induces offshore movement of sea ice transporting to the open SO, which leads to sea ice decrease in the SO coastal region and increase in the open SO. In the SO coastal region, the enhanced sea-ice divergence intensifies the formation of denser surface water descending along continental shelf by enhanced salt flux and reduced freshwater flux, combined with enhanced Ekman pumping and weakened stratification, contributing to the occurrence and intensification of continental shelf slope convection. On the other hand, the increased sea ice in the open SO weakens the westerlies, enhances sea-level pressure, and increases freshwater flux, whilst oceanic cyclonic circulation slows down, sea surface temperature and sea surface salinity decrease in the open SO response to the atmospheric changes. Thus, weakened cyclonic circulation, along with enhanced freshwater flux, reduced deep–ocean heat content, and increased stability of sea water, dampens the open–ocean deep convection in the SO, which in turn cools the sea surface temperature, increases sea-level pressure, and finally increases sea-ice concentration, providing a positive feedback. In the CSM, the use of a non-zero turning angle has the capability to reduce the SO warm bias. These results highlight the importance of an accurate representation of sea ice–ocean coupling processes in a CSM.
更多
查看译文
关键词
The southern ocean,Sea ice–ocean stress,Turning angle,Open–ocean deep convection,Sea-ice divergence,Freshwater flux,Atmosphere–sea ice–ocean interaction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要