Dose-Dependent Regulation Of Horizontal Cell Fate By Onecut Family Of Transcription Factors

PLOS ONE(2020)

引用 3|浏览14
暂无评分
摘要
Genome duplication leads to an emergence of gene paralogs that are essentially free to undergo the process of neofunctionalization, subfunctionalization or degeneration (gene loss). Onecut1 (Oc1) and Onecut2 (Oc2) transcription factors, encoded by paralogous genes in mammals, are expressed in precursors of horizontal cells (HCs), retinal ganglion cells and cone photoreceptors. Previous studies have shown that ablation of eitherOc1orOc2gene in the mouse retina results in a decreased number of HCs, while simultaneous deletion ofOc1andOc2leads to a complete loss of HCs. Here we study the genetic redundancy betweenOc1andOc2paralogs and focus on how the dose of Onecut transcription factors influences abundance of individual retinal cell types and overall retina physiology. Our data show that reducing the number of functional Oc alleles in the developing retina leads to a gradual decrease in the number of HCs, progressive thinning of the outer plexiform layer and diminished electrophysiology responses. Taken together, these observations indicate that in the context of HC population, the alleles of Oc1/Oc2 paralogous genes are mutually interchangeable, function additively to support proper retinal function and their molecular evolution does not follow one of the typical routes after gene duplication.
更多
查看译文
关键词
horizontal cell fate,onecut family,dose-dependent
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要