Synthesis and Reactivity Studies of a [Cp*Rh] Complex Supported by a Methylene-Bridged Hybrid Phosphine-Imine Ligand.

Journal of Organometallic Chemistry(2020)

引用 6|浏览6
暂无评分
摘要
[Cp∗Rh] complexes (Cp∗ = η5-pentamethylcyclopentadienyl) supported by bidentate chelating ligands are useful in studies of redox chemistry and catalysis, but little information is available for derivatives bearing “hybrid” [P,N] chelates. Here, the preparation, structural characterization, and chemical and electrochemical properties of a [Cp∗Rh] complex bearing the κ2-[P,N]-2-[(diphenylphosphino)methyl]pyridine ligand (PN) are reported. Cyclic voltammetry data reveal that [Cp∗Rh(PN)Cl]PF6 (1) undergoes a chemically reversible, net two-electron reduction at −1.28 V vs. ferrocenium/ferrocene, resulting in generation of a rhodium(I) complex (3) that is stable on the timescale of the voltammetry. However, 1H and 31P{1H} NMR studies reveal that chemical reduction of 1 generates a mixture of products over a 1 h timescale; this mixture forms as a result of deprotonation of the methylene group of 1 by 3 followed by further reactivity. The analogous complex [Cp∗Rh(PQN)Cl]PF6 (2; PQN = κ2-[P,N]-8-(diphenylphosphino)quinoline) does not undergo self-deprotonation or further reactivity upon two-electron reduction, confirming the reactivity of the acidic backbone methylene C–H bonds in the PN complexes. Comparison of the electrochemical properties 1 and 2 also shows that the extended conjugated system of PQN contributes to an additional ligand-centered redox event for 2 that is absent for 1.
更多
查看译文
关键词
Hydrides,Ligand design,Acidity,Redox chemistry,Electrochemistry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要