A single cell transcriptomics CRISPR activation screen identifies new epigenetic regulators of zygotic genome activation

BioRxiv(2019)

引用 3|浏览10
暂无评分
摘要
Zygotic genome activation (ZGA) is a crucial developmental milestone that remains poorly understood. This first essential transcriptional event in embryonic development coincides with extensive epigenetic reprogramming processes and is orchestrated, in part, by the interplay of transcriptional and epigenetic regulators. Here, we developed a novel high-throughput screening method that combines pooled CRISPR-activation (CRISPRa) with single-cell transcriptomics to systematically probe candidate regulators of ZGA. We screened 230 epigenetic and transcriptional regulators by upregulating their expression with CRISPRa in mouse embryonic stem cells (ESCs). Through single-cell RNA-sequencing (scRNA-seq) of CRISPRa-perturbed cells, we generated approximately 200,000 single-cell transcriptomes, each transduced with a unique short-guide RNA (sgRNA) targeting a specific candidate gene promoter. Using integrative dimensionality reduction of the perturbation scRNA-seq profiles, we characterized molecular signatures of ZGA and uncovered 44 factors that promote a ZGA-like response in ESCs, both in the coding and non-coding transcriptome. Upon upregulation of these factors, including the DNA binding protein Dppa2, the chromatin remodeller Smarca5 and the transcription factor Patz1, ESCs adopt an early embryonic-like state. Supporting their roles as ZGA regulators, Dppa2 and Smarca5 knock-out ESCs lose expression of ZGA genes, however, overexpression of Dppa2 in Smarca5 knock-out ESCs, but not vice versa, rescues ZGA-like expression, suggesting that Smarca5 regulates ZGA upstream and via Dppa2. Together, our …
更多
查看译文
关键词
CRISPRa,scRNA-seq,single cell,screen,zygotic genome activation,ZGA,MOFA,Dppa2,Smarca5,Patz1
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要