Comparison Of 4-Mercaptobenzoic Acid Surface-Enhanced Raman Spectroscopy-Based Methods For Ph Determination In Cells

APPLIED SPECTROSCOPY(2020)

引用 12|浏览2
暂无评分
摘要
Measurements of cellular pH are used to infer information such as stage of cell cycle, presence of cancer and other diseases, as well as delivery or effect of a therapeutic drug. Surface-enhanced Raman spectroscopy (SERS) of nanoparticle-based pH probes have been used to interrogate intracellular pH, with the significant advantage of avoiding photobleaching compared to fluorescent indicators. 4-Mercaptobenzoic acid (MBA) is a commonly used pH-sensitive reporter molecule. Intracellular pH sensing by SERS requires analysis of the observed MBA spectrum and spectral interference can affect the pH determination. Background from common cell containers, imaging too few particles, signal-to-noise ratios, and degradation of reporter molecules are among the factors that may alter appropriate SERS-based pH determination in cells. Here, we have compared common methods of spectral analysis to see how different factors alter the calculated pH in Raman maps of MBA functionalized Au nanostars in SW620 cancer cells. The methods included in our comparison use the relative intensity of the nu(COO-) stretch, chemometric analysis of the nu(8a)mode, and analyzing the frequency shift of the nu(8a)mode. These methods show different sensitivity to some of these sources of error in live cell experiments. pH determination based on Raman frequency shift appears to give a more reliable pH determination, though in high signal-to-noise environments, intensity ratios may provide better sensitivity to small changes in pH for cellular imaging.
更多
查看译文
关键词
Surface-enhanced Raman spectroscopy, SERS, Raman, microscopy, pH, cellular imaging
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要