When Are Cyber Blackouts in Modern Service Networks Likely?: A Network Oblivious Theory on Cyber (Re)Insurance Feasibility

ACM Transactions on Management Information Systems(2020)

引用 4|浏览47
暂无评分
摘要
AbstractService liability interconnections among globally networked IT- and IoT-driven service organizations create potential channels for cascading service disruptions worth billions of dollars, due to modern cyber-crimes such as DDoS, APT, and ransomware attacks. A natural question that arises in this context is: What is the likelihood of a cyber-blackout?, where the latter term is defined as the probability that all (or a major subset of) organizations in a service chain become dysfunctional in a certain manner due to a cyber-attack at some or all points in the chain. The answer to this question has major implications to risk management businesses such as cyber-insurance when it comes to designing policies by risk-averse insurers for providing coverage to clients in the aftermath of such catastrophic network events. In this article, we investigate this question in general as a function of service chain networks and different cyber-loss distribution types. We show somewhat surprisingly (and discuss the potential practical implications) that, following a cyber-attack, the effect of (a) a network interconnection topology and (b) a wide range of loss distributions on the probability of a cyber-blackout and the increase in total service-related monetary losses across all organizations are mostly very small. The primary rationale behind these results are attributed to degrees of heterogeneity in the revenue base among organizations and the Increasing Failure Rate property of popular (i.i.d/non-i.i.d) loss distributions, i.e., log-concave cyber-loss distributions. The result will enable risk-averse cyber-risk managers to safely infer the impact of cyber-attacks in a worst-case network and distribution oblivious setting.
更多
查看译文
关键词
Service network, cyber-blackout, systemic risk
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要