Plasmon-exciton coupling for nanophotonic sensing on chip.

OPTICS EXPRESS(2020)

引用 11|浏览11
暂无评分
摘要
The monolayer graphene-noble metallic nanostructure hybrid system with excellent optical characteristic, which is deserved pay attentions in the study of surface-enhanced Raman scattering spectroscopy. In this work, a hybrid sandwich structure is designed to transfer single-layer graphene to the surface of discs substrate covered by silver film and assembly of the dense Au nanoparticles (AuNPs). Blu-ray disc has a cycle density of approximately 5.7 times that of DVD-R due to the different storage capacities of these optical discs. In the research, enhancement effects have been explored for two different periodic grating structures. Compared to spectra of Si/G structure, Graphene Raman spectra from BIu-grating/AuNPs/G structure and Blu-grating/G/AuNPs enhancement multiples at the 2D peak position possesses different Raman responses of 1.09 and 2.51 times, respectively. The sandwich hybrid structure of Ag grating/graphene/AuNPs obtains a Raman enhancement factor (EF) of 6.2x10(8) for Rhodamine 6G and surface-enhanced Raman Scattering(SERS) detection limit of 0.1 nM. These findings can be attributed to the electric field enhancement of the hybrid structure and the chemical enhancement of graphene. This study provides a new approach for SERS detection and offers a new technique for designing SERS sensors with grapheme-plasmon hybrid structures. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要