Magnetic resonance diffusion tensor tractography of a midbrain auditory circuit in Alligator.

Neuroscience letters(2020)

引用 2|浏览3
暂无评分
摘要
Knowledge of brain circuitry is critical for understanding the organization, function, and evolution of central nervous systems. Most commonly, brain connections have been elucidated using histological and experimental methods that require animal sacrifice. On the other hand, magnetic resonance diffusion tensor imaging and associated tractography have emerged as a preferred method to noninvasively visualize brain white matter tracts. However, existing studies have primarily examined large, heavily myelinated fiber tracts. Whether tractography can visualize fiber bundles that contain thin and poorly myelinated axons is uncertain. To address this question, the midbrain auditory pathway to the thalamus was investigated in Alligator. This species was chosen because of its evolutionary importance as it is the reptilian group most closely related to birds and because its brain contains many thin and poorly myelinated tracts. Furthermore, this auditory pathway is well documented in other reptiles, including a related crocodilian. Histological observations and experimental determination of anterograde connections confirmed this path in Alligator. Tractography identified these tracts in Alligator and provided a 3-dimensional picture that accurately identified the neural elements of this circuit. In addition, tractography identified one possible unrecognized pathway. These results demonstrate that tractography can visualize circuits containing thin, poorly myelinated fibers. These findings open the door for future studies to examine these types of pathways in other vertebrates.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要