A Human-Specific Schizophrenia Risk Tandem Repeat Affects Alternative Splicing Of A Human-Unique Isoform As3mt(D2d3) And Mushroom Dendritic Spine Density

SCHIZOPHRENIA BULLETIN(2021)

引用 20|浏览13
暂无评分
摘要
Recent advances in functional genomics have facilitated the identification of multiple genes and isoforms associated with the genetic risk of schizophrenia, yet the causal variations remain largely unclear. A previous study reported that the schizophrenia risk single-nucleotide polymorphism (SNP) rs7085104 at 10q24.32 was in high linkage disequilibrium (LD) with a human-specific variable number of tandem repeat (VNTR), and both were significantly associated with the brain mRNA expression of a human-unique AS3MT(d2d3) isoform in Europeans and African Americans. In this study, we have shown the direct regulation of the AS3MT(d2d3) mRNA expression by this VNTR through an in vitro minigene splicing assay, suggesting that it is likely a causative functional variation. Intriguingly, we have further confirmed that the VNTR and rs7085104 are significantly associated with AS3MT(d2d3) mRNA expression in brains of Han Chinese donors, and rs7085104 is also associated with risk of schizophrenia in East Asians. Finally, the overexpression of AS3MT(d2d3) in cultured primary hippocampal neurons results in significantly reduced densities of mushroom dendritic spines, implicating its potential functional impact. Considering the crucial roles of dendritic spines in neuroplasticity, these results reveal the potential regulatory impact of the schizophrenia risk VNTR on AS3MT(d2d3) and provide insights into the underlying biological mechanisms.
更多
查看译文
关键词
schizophrenia, VNTR, AS3MT(d2d3), alternative splicing, dendritic spine
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要