Harmonium

ACM Transactions on Sensor Networks(2018)

引用 0|浏览0
暂无评分
摘要
We introduce Harmonium , a novel ultra wideband (UWB) RF localization architecture that achieves decimeter-scale accuracy indoors. Harmonium strikes a balance between tag simplicity and processing complexity to provide fast and accurate indoor location estimates. Harmonium uses only commodity components and consists of a small, inexpensive, lightweight, and FCC-compliant UWB transmitter or tag , fixed infrastructure anchors with known locations, and centralized processing that calculates the tag’s position. Anchors employ a new frequency-stepped narrowband receiver architecture that rejects narrowband interferers and extracts high-resolution timing information without the cost or complexity of traditional UWB approaches. In a complex indoor environment, 90% of position estimates obtained with Harmonium exhibit less than 31 cm of error with an average of 9 cm of inter-sample noise. In non-line-of-sight conditions (i.e., through-wall), 90% of position error is less than 42 cm. The tag draws 75 mW when actively transmitting, or 3.9 mJ per location fix at the 19 Hz update rate. Tags weigh 3 g and cost $4.50 USD at modest volumes. Furthermore, VLSI-based design concepts are identified for a simple, low-power realization of the Harmonium tag to offer a roadmap for the realization of Harmonium concepts in future integrated systems. Harmonium introduces a new design point for indoor localization and enables localization of small, fast objects such as micro quadrotors, devices previously restricted to expensive optical motion capture systems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要