Physical Realization of Non-Radiative Wireless Power Transmission Using Zenneck Waves

semanticscholar(2019)

引用 1|浏览0
暂无评分
摘要
Throughout 2015-18, authors conducted the experiments to study the voltage oscillation across the GBI resonator system. One such experiment carrying out power transfer across 80 mm metal wall can be seen in fig. S 1. This experiment uses the ground plate and wire arrangement to sustain a meaningful voltage oscillation across the terminals of the load (40 watts halogen). Based on the experimental findings shown in fig. S 1, the authors tried to replace the equivalent RLC lumped elements(unsuccessfully so). The reasons behind the failure of RLC lumped elements based counterpoise were carefully and qualitatively investigated, through a series of experiments. It was observed that the planar structure of the receiver was unable to sustain a significant value of voltage and current. As shown in Fig. S 2 , the gap between the mesh and ground layer is g=1.5 mm. At a target frequency of 27MHz, g << λ/4. The largest dimension of the transceiver system is Ax = 150 mm, which is << λ/2π = 1767mm at target frequency of 27MHz. Thus, the proposed receiver in its present form is electrically smallS1,S2. It has been observed that the dimensions of the lumped RLC elements become the part of the over all electrical length of the antenna beyond 900MHz S3,S4. However, in the HF regime, the dimensions of the RLC elements can not provide the appropriate electrical length. Electrically small antenna’s have poor radiation efficiency, which in turn also
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要