Geodemographic Influence Maximization

KDD '20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining Virtual Event CA USA July, 2020(2020)

引用 12|浏览291
暂无评分
摘要
Given a set of locations in a city, on which ones should we place ads on so as to reach as many people as possible within a limited budget? Past research has addressed this question under the assumption that dense trajectory data are available to determine the reach of each ad. However, the data that are available in most industrial settings do not consist of dense, long-range trajectories; instead, they consist of statistics on people's short-range point-to-point movements. In this paper, we address the natural problem that arises such data: given a distribution of population and point-to-point movement statistics over a network, find a set of locations within a budget that achieves maximum expected reach. We call this problem geodemographic influence maximization (GIM). We show that the problem is NP-hard, but its objective function is monotone and submodular, thus admits a greedy algorithm with a 1 over 2 (1-1 over e) approximation ratio. Still, this algorithm is inapplicable on large-scale data for high-frequency digital signage ads. We develop an efficient deterministic algorithm, Lazy-Sower, exploiting a novel, tight double-bounding scheme of marginal influence gain as well as the locality proprieties of the problem; a learning-based variant, NN-Sower, utilizes randomization and deep learning to further improve efficiency, with a slight loss of quality. Our exhaustive experimental study on two real-world urban datasets demonstrates the efficacy and efficiency of our solutions compared to baselines.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要