Spectrum-Adapted Polynomial Approximation for Matrix Functions

arxiv(2018)

引用 0|浏览1
暂无评分
摘要
We propose and investigate two new methods to approximate $f({\bf A}){\bf b}$ for large, sparse, Hermitian matrices ${\bf A}$. The main idea behind both methods is to first estimate the spectral density of ${\bf A}$, and then find polynomials of a fixed order that better approximate the function $f$ on areas of the spectrum with a higher density of eigenvalues. Compared to state-of-the-art methods such as the Lanczos method and truncated Chebyshev expansion, the proposed methods tend to provide more accurate approximations of $f({\bf A}){\bf b}$ at lower polynomial orders, and for matrices ${\bf A}$ with a large number of distinct interior eigenvalues and a small spectral width.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要