Hetero tri metallic Precursor with 2:2:1 Metal Ratio Requires at Least a Pentanuclear Molecular Assembly.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2020)

引用 10|浏览49
暂无评分
摘要
This work represents an important step in the quest to make heteromultimetallic molecules featuring specific metal types and complicated metal ratios. The rational design, synthesis, and characterization of a complex heterotrimetallic single-source molecular precursor for the next generation sodium-ion battery cathode material, Na2Mn2FeO6, is described. A unique pentametallic platform [Mn-II(ptac)(3)-Na-Mn-III(acac)(3)-Na-Mn-II(ptac)(3)] (1) was derived from the known polymeric structure of [NaMnII(acac)(3)](infinity), through a series of elaborate design procedures, such as mixed-ligand, unsymmetric ligand, and mixed-valent approaches. Importantly, the application of those techniques results in a molecule with distinctively different transition metal positions in terms of ligand environment and oxidation states. An isovalent substitution of Fe-III for the central Mn-III ion forms the target heterotrimetallic precursor [Mn-II(ptac)(3)-Na-Fe-III(acac)(3)-Na-Mn-II(ptac)(3)] (3) with an appropriate metal ratio of Na:Mn:Fe = 2:2:1. The arrangement of metal ions and ligands in this pentametallic assembly was confirmed by single crystal X-ray investigation. The unambiguous assignment of the positions and oxidation states of the Periodic Table neighbors Fe and Mn in 3 has been achieved by a combination of investigative techniques that include synchrotron resonant diffraction, X-ray multiwavelength anomalous diffraction, X-ray fluorescence spectroscopy, Mossbauer spectroscopy, and gas-phase DART mass spectrometry. The heterotrimetallic single-source precursor 3 was shown to exhibit a clean decomposition pattern yielding the phase-pure P2-Na2Mn2FeO6 quaternary oxide with high uniformity of metal ion distribution as confirmed by electron microscopy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要