Ground data confirm warming and drying are at a critical level for forest survival in western equatorial Africa

user-5ebe3c75d0b15254d6c50b36(2019)

引用 2|浏览8
暂无评分
摘要
Background.The humid tropical forests of Central Africa influence weather worldwide and play a major role in the global carbon cycle. However they are also an ecological anomaly, with evergreen forests dominating the western equatorial region despite less than 2000mm total annual rainfall. Meteorological data for Central Africa are notoriously sparse and incomplete and there are substantial issues with satellite-derived data because of inability to ground-truth estimates and persistent cloudiness. Long-term climate observations are urgently needed to verify regional climate and vegetation models, shed light on the mechanisms that drive climatic variability and assess the viability of evergreen forests in equatorial Africa under future climate scenarios. Methods. We have the rare opportunity to analyse a 34-year dataset of rainfall and temperature (and shorter periods of absolute humidity, wind speed, solar radiation and aerosol optical depth) from Lopé National Park, a long-term ecological research site in western equatorial Africa. We used linear mixed models and spectral analyses to assess seasonal and inter-annual variation, long-term trends and oceanic influences on local weather patterns. Results. Lopé’s weather is characterised by a light-deficient, cool, long dry season. Long-term climatic means have changed significantly over the last three decades, with warming occurring at a rate of 0.23°C per decade (minimum daily temperature) and drying at a rate of 50mm per decade (total annual rainfall). Inter-annual variability is highly influenced by sea surface temperatures of the major oceans. In El Niño years Lopé experiences both higher temperatures and less rainfall with increased contrast between wet and dry seasons. Lopé rainfall observations lend support for the role of the Atlantic cold tongue in “dry” models of climate change in the region. Conclusions. Dry season cloud in western equatorial Africa plays a key role in reducing evaporative demand during seasonal drought and maintaining evergreen tropical forests despite relatively low annual rainfall. In the context of a rapidly warming and drying climate, urgent research is needed into the sensitivity of clouds to ocean temperatures and the viability of humid forests in this dry region should the clouds disappear.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要