Optimization Of Silicone 3d Printing With Hierarchical Machine Learning

3D PRINTING AND ADDITIVE MANUFACTURING(2019)

引用 64|浏览22
暂无评分
摘要
Additive manufacturing of soft materials requires optimization of printable inks, formulations of these feedstocks, and complex printing processes thatmust balance a large number of disparate but highly correlated variables. Here, hierarchical machine learning (HML) is applied to 3D printing of silicone elastomer via freeform reversible embedding (FRE), which is challenging because it involves depositing aNewtonian prepolymer liquid phase within a Bingham plastic support bath. The advantage of the HML algorithm is that it can predict the behavior of complex physical systems using sparse data sets through integration of physical modeling in a framework of statistical learning. Here, it is shown that this algorithm can be used to simultaneously optimize material, formulation, and processing variables. The FRE method for 3D printing silicone parts was optimized based on a training set with 38 trial runs. Compared with the previous results from iterative optimization approaches using design-of-experiment and steepest-ascent methods, HML increased printing speed by up to 2.5 x while retaining print fidelity and also identified a unique silicone formulation and printing parameters that had not been found previously through trialand- error approaches. These results indicate that HML is an effective tool with the potential for broad application for planning and optimizing in additive manufacturing of soft materials via the FRE method.
更多
查看译文
关键词
additive manufacturing, machine learning, design tool, optimization, polymer, 3D printing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要