Scalable Neural Theorem Proving on Knowledge Bases and Natural Language

user-5ebe28d54c775eda72abcdf7(2018)

引用 1|浏览379
暂无评分
摘要
Reasoning over text and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. Transducing text to logical forms which can be operated on is a brittle and error-prone process. Operating directly on text by jointly learning representations and transformations thereof by means of neural architectures that lack the ability to learn and exploit general rules can be very data-inefficient and not generalise correctly. These issues are addressed by Neural Theorem Provers (NTPs)(Rocktäschel & Riedel, 2017), neuro-symbolic systems based on a continuous relaxation of Prolog’s backward chaining algorithm, where symbolic unification between atoms is replaced by a differentiable operator computing the similarity between their embedding representations. In this paper, we first propose Neighbourhood-approximated Neural Theorem Provers (NaNTPs) consisting of two extensions toNTPs, namely a) a method for drastically reducing the previously prohibitive time and space complexity during inference and learning, and b) an attention mechanism for improving the rule learning process, deeming them usable on real-world datasets. Then, we propose a novel approach for jointly reasoning over KB facts and textual mentions, by jointly embedding them in a shared embedding space. The proposed method is able to extract rules and provide explanations—involving both textual patterns and KB relations—from large KBs and text corpora. We show that NaNTPs perform on par with NTPs at a fraction of a cost, and can achieve competitive link prediction results on challenging …
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要