Retina-Like Visual Image Reconstruction Via Spiking Neural Model

2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR)(2020)

引用 72|浏览317
暂无评分
摘要
The high-sensitivity vision of primates, including humans, is mediated by a small retinal region called the fovea. As a novel bio-inspired vision sensor, spike camera mimics the fovea to record the nature scenes by continuous-time spikes instead of frame-based manner. However, reconstructing visual images from the spikes remains to be a challenge. In this paper, we design a retina-like visual image reconstruction framework, which is flexible in reconstructing full texture of natural scenes from the totally new spike data. Specifically, the proposed architecture consists of motion local excitation layer, spike refining layer and visual reconstruction layer motivated by bio-realistic leaky integrate and fire (LIF) neurons and synapse connection with spiketiming-dependent plasticity (STDP) rules. This approach may represent a major shift from conventional frame-based vision to the continuous-time retina-like vision, owning to the advantages of high temporal resolution and low power consumption. To test the performance, a spike dataset is constructed which is recorded by the spike camera. The experimental results show that the proposed approach is extremely effective in reconstructing the visual image in both normal and high speed scenes, while achieving high dynamic range and high image quality.
更多
查看译文
关键词
motion local excitation layer,spike refining layer,visual reconstruction layer,bio-realistic leaky,spike-timing-dependent plasticity rules,continuous-time retina-like vision,spike dataset,spike camera,visual image,image quality,spiking neural model,fovea,bio-inspired vision sensor,continuous-time spikes,frame-based manner,natural scenes,frame-based vision,speed scenes,synapse connection
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要