Architecting Large Caches with Reduced Energy

user-5e8423bd4c775ee160ac3e1a(2018)

引用 0|浏览1
暂无评分
摘要
With process scaling, a large cache will be required in the future in order to meet the demands of emerging multi-core systems with higher processing speeds. However, the low density of Static Random Access Memory (SRAM) hinders the growth of cache capacity, which can take up to half of the die area. At the same time, main memory, with its long latency and limited bandwidth, also does not keep up with the speed of the CPU. Thus, new approaches are needed to increase on-die cache capacity and overcome the memory wall problem. Using the emerging 3D-stacked Dynamic Random Access Memory (DRAM) cache, which can easily provide gigabytes of storage, as the last level cache, is one potential approach to address the memory wall problem. However, the DRAM cache suffers from high energy consumption with increasing capacity. This dissertation first presents an energy-efficient DRAM cache design. This design is based on the observation that the DRAM cache with longer bitlines consumes more energy due to larger capacitance. We propose TCache, which partitions every subarray of DRAM cache banks into three sublevels and schedules energy-efficient data movement among these levels based on reuse distance. We also propose the LevelMap and WayMap to indicate in which sublevel and way that every data block of the DRAM cache is located. The Energy-efficient Data Movement policy based on the reuse distance is presented to increase the hit rate in the energy-efficient sublevel regions. Evaluations show these techniques reduce DRAM cache energy consumption by 33.4% (by 11% after considering DRAM cache …
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要