A framework for understanding Mo isotope records of Archean and Paleoproterozoic Fe- and Mn-rich sedimentary rocks: Insights from modern marine hydrothermal Fe-Mn oxides

Geochimica et Cosmochimica Acta(2020)

引用 14|浏览18
暂无评分
摘要
Molybdenum isotopic compositions (δ98/95Mo) of Archean and Paleoproterozoic Fe- and Mn-rich sedimentary rocks have been used to investigate local accumulations of O2 in an O2-lean ocean. Previous studies interpret that these δ98/95Mo values would be a representation of the global minimum for δ98/95Mo of contemporaneous seawater and would, therefore, link to global paleoredox conditions. Here, we present new δ98/95Mo data on modern marine hydrothermal Fe-Mn oxides, for a wide range of Fe/Mn ratios, from five hydrothermal systems. Samples composed mainly of Fe oxides (Fe/Mn > 10) show positive values (δ98/95Mo ∼ +0.7‰), whereas those containing substantial amounts of Mn oxides (Fe/Mn < 10−1) generally exhibit negative values (δ98/95Mo ∼ −0.8 ‰). These δ98/95Mo values are consistent with isotopic fractionations due to the adsorption of seawater Mo onto Fe and Mn oxides, respectively. The aforementioned positive and negative values are connected by a positive correlation between δ98/95Mo values and the Fe/Mn ratios of samples with Fe/Mn ∼ 10−1–101. The positive correlation can be explained by the mixing of δ98/95Mo in Fe and Mn oxides. Based on these data, we propose that the measured δ98/95Mo trends for the modern hydrothermal Fe-Mn oxides can be reproduced using a simple mass-balance calculation with both modern seawater δ98/95Mo and Mo isotopic fractionations due to the adsorption of Mo onto Fe and Mn oxides. By applying this mass-balance calculation to published Fe/Mn and δ98/95Mo data on ancient Fe- and Mn-rich sedimentary rocks, we estimate Archean and Paleoproterozoic seawater δ98/95Mo and their deviations (Δ98/95Mo) from modern seawater δ98/95Mo. The long-term evolution of seawater δ98/95Mo inferred as a result suggests extensive deposition of Fe and Mn oxides at ∼2.3–2.2 Ga and an expansion of euxinic conditions at ∼1.9 Ga, which are broadly consistent with the proposed redox evolution of the ocean–atmosphere system during the Archean and Paleoproterozoic.
更多
查看译文
关键词
Molybdenum isotope,Modern hydrothermal iron and manganese oxides,Ocean paleoredox,Paleoproterozoic,Archean
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要