When Ensembling Smaller Models is More Efficient than Single Large Models

arxiv(2020)

引用 30|浏览227
暂无评分
摘要
Ensembling is a simple and popular technique for boosting evaluation performance by training multiple models (e.g., with different initializations) and aggregating their predictions. This approach is commonly reserved for the largest models, as it is commonly held that increasing the model size provides a more substantial reduction in error than ensembling smaller models. However, we show results from experiments on CIFAR-10 and ImageNet that ensembles can outperform single models with both higher accuracy and requiring fewer total FLOPs to compute, even when those individual models' weights and hyperparameters are highly optimized. Furthermore, this gap in improvement widens as models become large. This presents an interesting observation that output diversity in ensembling can often be more efficient than training larger models, especially when the models approach the size of what their dataset can foster. Instead of using the common practice of tuning a single large model, one can use ensembles as a more flexible trade-off between a model's inference speed and accuracy. This also potentially eases hardware design, e.g., an easier way to parallelize the model across multiple workers for real-time or distributed inference.
更多
查看译文
关键词
smaller models,efficient
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要