Artifact removal using a hybrid-domain convolutional neural network for limited-angle computed tomography imaging.

Physics in medicine and biology(2020)

引用 36|浏览26
暂无评分
摘要
The suppression of streak artifacts in computed tomography with a limited-angle configuration is challenging. Conventional analytical algorithms, such as filtered backprojection (FBP), are not successful due to incomplete projection data. Moreover, model-based iterative total variation algorithms effectively reduce small streaks but do not work well at eliminating large streaks. In contrast, FBP mapping networks and deep-learning-based postprocessing networks are outstanding at removing large streak artifacts; however, these methods perform processing in separate domains, and the advantages of multiple deep learning algorithms operating in different domains have not been simultaneously explored. In this paper, we present a hybrid-domain convolutional neural network (hdNet) for the reduction of streak artifacts in limited-angle computed tomography. The network consists of three components: the first component is a convolutional neural network operating in the sinogram domain, the second is a domain transformation operation, and the last is a convolutional neural network operating in the CT image domain. After training the network, we can obtain artifact-suppressed CT images directly from the sinogram domain. Verification results based on numerical, experimental and clinical data confirm that the proposed method can significantly reduce serious artifacts.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要