A general memristor-based partial differential equation solver

NATURE ELECTRONICS(2018)

引用 171|浏览29
暂无评分
摘要
Memristive devices have been extensively studied for data-intensive tasks such as artificial neural networks. These types of computing tasks are considered to be ‘soft’ as they can tolerate low computing precision without suffering from performance degradation. However, ‘hard’ computing tasks, which require high precision and accurate solutions, dominate many applications and are difficult to implement with memristors because the devices normally offer low native precision and suffer from high device variability. Here we report a complete memristor-based hardware and software system that can perform high-precision computing tasks, making memristor-based in-memory computing approaches attractive for general high-performance computing environments. We experimentally implement a numerical partial differential equation solver using a tantalum oxide memristor crossbar system, which we use to solve static and time-evolving problems. We also illustrate the practical capabilities of our memristive hardware by using it to simulate an argon plasma reactor.
更多
查看译文
关键词
Electrical and electronic engineering,Electronic devices,Electrical Engineering
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要