Genotype-Dependent Differences between Cereals in Response to Manganese Excess in the Environment

AGRONOMY-BASEL(2020)

引用 4|浏览3
暂无评分
摘要
Industrial and agronomic activities lead to oversupply and accumulation of elements in the environment. Relatively little is known about mechanisms of manganese (Mn) triggered stress. In this study, different cultivars of popular cereals wheat, oat, and barley were investigated for their response to excessive Mn. Manganese ions (MnCl2) at 5 and 10 mM were applied to the grains and then to the media on which the plants grew until they developed their first leaf. It was performed ICP MS aiming to understand the mechanism of manganese stress in susceptible and resistant cultivar. Under Mn-stress a decrease in fresh weight of plants was observed, also differences in water content in first leaves, an increase in superoxide dismutases (SOD) and peroxidases (POX) activity, and a significant rise in catalase (CAT) was only characteristic for barley. Increasing Mn concentration resulted in enhancing of manganese superoxide dismutase (Mn-SOD) and copper, zinc superoxide dismutase (Cu/Zn-SOD) bands intensity. The increase in proline content, depending on a balance between pyrroline-5-carboxylate synthase (P5CS), ornithine-d-aminotransferase (OAT), and proline dehydrogenases (PHD) activities, indicated osmotic disorders in all plants and differentiated the studied cereals. Microscopic observations of changes in the structure of plastids and starch accumulation in Mn presence were particularly visible in sensitive cultivars. The study ranked the tested cereals in terms of their tolerance to Mn from the most tolerant wheat through barley and the least tolerant oats.
更多
查看译文
关键词
manganese,oxidative stress,osmoprotectants,wheat/barley/oats,enzyme activities
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要