Power Device Temperature-Balancing Control Method for a Phase-Shift Full-Bridge Converter

ENERGIES(2020)

引用 2|浏览11
暂无评分
摘要
In this paper, a switching method is proposed for power device temperature-balancing in a phase-shift full-bridge (PSFB) converter. PSFB is commonly used for applications that require high efficiency, because a zero-voltage switching (ZVS) operation is possible on the primary-side. In PSFB, the circulation current complicates ZVS under a light-load condition, which generates heat. Meanwhile, the heat generated in PSFB creates a temperature deviation between the lagging leg and the leading leg, which shortens the lifetime of the power device, thereby reducing system reliability and efficiency. To solve this problem, previous studies applied a pulse-width modulation (PWM) switching method for light and medium loads, and a phase-shift switching method for the region where ZVS is possible. Although this method has the advantage of easy control, the maximum temperature of the legs of the PSFB increases with medium loads. In this paper, a temperature-balancing algorithm a temperature-balance control is proposed to decrease the leg temperature using switching based on position exchanges of the leading leg and lagging leg along with PWM switching. Temperature-balance control minimizes leg temperature deviation under light load conditions. The proposed control method provides a minimum temperature difference between the two legs and high efficiency.
更多
查看译文
关键词
Phase-shift full-bridge (PSFB) converter,Zero-voltage switching,Temperature-balance control
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要