Decodable quantum LDPC codes beyond the square root distance barrier using high dimensional expanders

2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS)(2020)

引用 43|浏览20
暂无评分
摘要
Constructing quantum LDPC codes with a minimum distance that grows faster than a square root of the length has been a major challenge of the field. With this challenge in mind, we investigate constructions that come from high-dimensional expanders, in particular Ramanujan complexes. These naturally give rise to very unbalanced quantum error correcting codes that have a large X-distance but a much smaller Z-distance. However, together with a classical expander LDPC code and a tensoring method that generalises a construction of Hastings and also the Tillich-Zemor construction of quantum codes, we obtain quantum LDPC codes whose minimum distance exceeds the square root of the code length and whose dimension comes close to a square root of the code length. When the ingredient is a 3-dimensional Ramanujan complex, we show that its 2-systole behaves like a square of the log of the complex size, which results in an overall quantum code of minimum distance n 1/2 logn, and sets a new record for quantum LDPC codes. When we use a 2-dimensional Ramanujan complex, or the 2-skeleton of a 3-dimensional Ramanujan complex, we obtain a quantum LDPC code of minimum distance n 1/2 log 1/2 n. We then exploit the expansion properties of the complex to devise the first polynomial time algorithm that decodes above the square root barrier for quantum LDPC codes.
更多
查看译文
关键词
Quantum code,Ramanujan Complex,expander
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要