Interleukin 17 and senescent cells regulate the foreign body response to synthetic material implants in mice and humans.

SCIENCE TRANSLATIONAL MEDICINE(2020)

引用 86|浏览44
暂无评分
摘要
Medical devices and implants made of synthetic materials can induce an immune-mediated process when implanted in the body called the foreign body response, which results in formation of a fibrous capsule around the implant. To explore the immune and stromal connections underpinning the foreign body response, we analyzed fibrotic capsules surrounding surgically excised human breast implants from 12 individuals. We found increased numbers of interleukin 17 (IL17)-producing gamma delta(+) T cells and CD4(+) T helper 17 (T(H)17) cells as well as senescent stromal cells in the fibrotic capsules. Further analysis in a murine model demonstrated an early innate IL17 response to implanted synthetic material (polycaprolactone) particles that was mediated by innate lymphoid cells and gamma delta(+) T cells. This was followed by a chronic adaptive CD4+ T(H)17 cell response that was antigen dependent. Synthetic materials with varying chemical and physical properties implanted either in injured muscle or subcutaneously induced similar IL17 responses in mice. Mice deficient in IL17 signaling established that IL17 was required for the fibrotic response to implanted synthetic materials and the development of p16(INK4a) senescent cells. IL6 produced by senescent cells was sufficient for the induction of IL17 expression in T cells. Treatment with a senolytic agent (navitoclax) that killed senescent cells reduced IL17 expression and fibrosis in the mouse implant model. Discovery of a feed-forward loop between the T(H)17 immune response and the senescence response to implanted synthetic materials introduces new targets for therapeutic intervention in the foreign body response.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要