Transcriptional regulation of HSPB1 by Friend leukemia integration-1 factor modulates radiation and temozolomide resistance in glioblastoma.

Oncotarget(2020)

引用 12|浏览18
暂无评分
摘要
Glioblastoma (GBM) is the most common primary brain tumor and is invariably fatal. Heat shock proteins (HSPs) provide protein signatures/biomarkers for GBM that afford potential as targets for developing anti-GBM drugs. In GBM, elevated expression of hypoxia inducible factors under the influence of Ets family proteins significantly promotes the expression of HSPs. RNAseq analysis identified HSPB1 as a prominent upregulated HSP in GBM and in radiation resistant/temozolomide resistant (radio/TMZR) GBM. Here, we established friend leukemia integration 1 (Fli-1), a member of Ets family to be playing a transcriptional regulatory role on the HSPB1 gene. Fli-1 binds to nucleotide residues GGAA at binding sites 3, 6 and 7 in the 5-kb upstream region of HSPB1. Fli-1 has been linked to oncogenic transformation with upregulation in radio/TMZR GBM. Overexpression of Fli-1 in GBM promotes resistance, whereas Fli-1 knockdown in radio/TMZR GBM cells suppresses resistance. We identify the underlying molecular mechanisms of Fli-1-mediated regulation of HSPB1 that drive extracellular matrix remodeling and epithelial to mesenchymal transition in radio/TMZR GBM cells. This study uncovers Fli-1 as a potential therapeutic target for combating radiation and temozolomide resistance in GBM.
更多
查看译文
关键词
Fli-1,HSPB1,RNAseq,radioresistant GBM,temozolomide resistant GBM
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要