A Type VI secretion system delivers a cell-wall amidase to target bacterial competitors.

MOLECULAR MICROBIOLOGY(2020)

引用 23|浏览31
暂无评分
摘要
The human pathogen Pseudomonas aeruginosa harbors three paralogous zinc proteases annotated as AmpD, AmpDh2, and AmpDh3, which turn over the cell wall and cell wall-derived muropeptides. AmpD is cytoplasmic and plays a role in the recycling of cell wall muropeptides, with a link to antibiotic resistance. AmpDh2 is a periplasmic soluble enzyme with the former anchored to the inner leaflet of the outer membrane. We document, herein, that the type VI secretion system locus II (H2-T6SS) of P. aeruginosa delivers AmpDh3 (but not AmpD or AmpDh2) to the periplasm of a prey bacterium upon contact. AmpDh3 hydrolyzes the cell wall peptidoglycan of the prey bacterium, which leads to its killing, thereby providing a growth advantage for P. aeruginosa in bacterial competition. We also document that the periplasmic protein PA0808, heretofore of unknown function, affords self-protection from lysis by AmpDh3. Cognates of the AmpDh3-PA0808 pair are widely distributed across Gram-negative bacteria. Taken together, these findings underscore the importance of their function as an evolutionary advantage and that of the H2-T6SS as the means for the manifestation of the effect.
更多
查看译文
关键词
bacterial competition,cell wall degradation,peptidoglycan hydrolase,type 6 secretion system
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要