Corosolic acid inhibits cancer progress through inactivating YAP in hepatocellular carcinoma.

ONCOLOGY RESEARCH(2020)

引用 13|浏览1
暂无评分
摘要
Chemotherapy is critical for the treatment of hepatocellular carcinoma (HCC). Despite the proapoptotic effects of corosolic acid (CA) treatment, its underlying mechanism is not completely clear. The aim of this study was to determine the molecular mechanism of CA in HCC treatment. MTT assay was used to determine the IC50 of CA. Immunoprecipitation and immunofluorescence were used to detect the interaction and subcellular localization of Yes-associated protein (YAP) and mouse double minute 2 (MDM2). In addition, in vivo xenotransplantation was performed to assess the effects of CA, YAP, and MDM2 on tumorigenesis. The IC50 of CA was about 40 mu M in different HCC cell lines, and CA decreased YAP expression by reducing its stability and increasing its ubiquitination. CA treatment and MDM2 overexpression significantly decreased the crosstalk between YAP and cAMP-responsive element-binding protein (CREB), TEA domain transcription factor (TEAD), and Runt-related transcription factor 2 (Runx2). CA stimulation promoted the translocation of YAP and MDM2 from the nucleus to the cytoplasm and increased their binding. In addition, CA treatment obviously reduced tumorigenesis, whereas this effect was abolished when cells were transfected with sh-MDM2 or Vector-YAP. The present study uncovered that CA induced cancer progress repression through translocating YAP from the nucleus in HCC, which might provide a new therapeutic target for HCC.
更多
查看译文
关键词
Hepatocellular carcinoma (HCC),Corosolic acid (CA),Yes-associated protein (YAP),Mouse double minute 2 (MDM2)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要